Intelligent technical analysis based equivolume charting for stock trading using neural networks
نویسندگان
چکیده
It has been long recognized that trading volume provides valuable information for understanding stock price movement. As such, equivolume charting was developed to consider how stocks appear to move in a volume frame of reference as opposed to a time frame of reference. Two technical indicators, namely the volume adjusted moving average (VAMA) and the ease of movement (EMV) indicator, are developed from equivolume charting. This paper explores the profitability of stock trading by using a neural network model developed to assist the trading decisions of the VAMA and EMV. The generalized regression neural network (GRNN) is chosen and utilized on past S&P 500 index data. For the VAMA, the GRNN is used to predict the future stock prices, as well as the future width size of the equivolume boxes typically utilized on an equivolume chart, for calculating the future value of the VAMA. For the EMV, the GRNN is also used to predict the future value of the EMV. The idea is to further exploit the equivolume potential by using a forecasting system to predict the future equivolume measurements, allowing investors to enter or exit trades earlier. The results show that the stock trading using the neural network with the VAMA and EMV outperforms the results of stock trading generated from the VAMA and EMV without neural network assistance, the simple moving averages (MA) in isolation, and the buy-and-hold trading strategy. 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Performance Evaluation of the Technical Analysis Indicators in Comparison whit the Buy and Hold Strategy in Tehran Stock Exchange Indices
Technical analysis is one of the financial market analysis tools. Technical analysis is a method of anticipating prices and markets through studying historical market data. Based on the factors studied in this type of analysis, indicators are designed and presented to facilitate decision-making on buy and sell stress and then buy and sell action in financial markets. This research evaluates per...
متن کاملRanking and Managing Stock in the Stock Market Using Fundamental and Technical Analyses
The stock selection problem is one of the major issues in the investment industry, which is mainly solved by analyzing financial ratios. However, considering the complexity and imprecise patterns of the stock market, obvious and easy-to-understand investment rules, based on fundamental analysis, are difficult to obtain. Fundamental and technical analyses are two common methods for predicting th...
متن کاملA Hybrid Time Lagged Network for Predicting Stock Prices
Traditionally, technical analysis approach, that predicts stock prices based on historical prices and volume, basic concepts of trends, price patterns and oscillators, is commonly used by stock investors to aid investment decisions. Advanced intelligent techniques, ranging from pure mathematical models and expert systems to neural networks, have also been used in many financial trading systems ...
متن کاملRanking and Managing Stock in the Stock Market Using Fundamental and Technical Analyses
The stock selection problem is one of the major issues in the investment industry, which is mainly solved by analyzing financial ratios. However, considering the complexity and imprecise patterns of the stock market, obvious and easy-to-understand investment rules, based on fundamental analysis, are difficult to obtain. Fundamental and technical analyses are two common methods for predicting th...
متن کاملStock market trading rule discovery using technical charting heuristics
In this case study in knowledge engineering and data mining, we implement a recognizer for two variations of thèbull ¯ag' technical charting heuristic and use this recognizer to discover trading rules on the NYSE Composite Index. Out-of-sample results indicate that these rules are effective. q 2002 Elsevier Science Ltd. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 34 شماره
صفحات -
تاریخ انتشار 2008